Energy saving twin circulating pumps with flanges

Construction
Energy saving variable speed circulating pump driven by a permanent magnet synchronous motor (pm) controlled by on board inverter.

Applications
Heating, conditioning, circulating systems.
For civil and industrial applications.

Operating conditions
- Liquid temperature from -10 °C to +110 °C
- Ambient temperature from 0 °C to +40 °C
- Maximum permissible working pressure: 6/10 bar
- Storage: -20°C/+70°C max. relative humidity 95% at 40 °C
- Certifications: in conformity with CE requirements
- Sound pressure ≤ 54 dB (A).
- Minimum suction pressure: - 0,5 bar at 50 °C.
 - 0,8 bar at 80 °C.
 - 1,4 bar at 110 °C.
- Maximum glycol quantity: 20%.
- EMC according to: EN 55014-1, EN 55014-2, EN 61000-3-2, EN 61000-3-2.
- Connections: Flanges according to PN 6/10, EN 1092-2, DN 40, 50, 65, 80, 100.
- The benchmark for most efficient circulators is EEI ≤ 0,20.

Motor
Synchronous motor with permanent magnet.
- Motor: variable speed
- Standard voltage: single-phase 230 V (-10%;+6%)
- Frequency: 50-60 Hz
- Protection: IP 44
- Insulation class: H
- Overload protection (integrated).
- Cable: phases and neutral.
- Constructed in accordance with: EN 60335-1, EN 60335-2-51.

Features

Smart pump
NCED G.F adapt its functions to the system: the circulator measures the pressure and the flow and adjusts the speed to the selected pressure.

Easy use
There are different operating modes selectable from the control panel.

Operation

Operation of a single pump choosed by the customer, with the second pump on stand-by.
Operating modes

Automatic mode
(factory setting):
In this mode the pump automatically sets the operating pressure, depending on the hydraulic system. This mode is recommended in most systems.

Proportional pressure mode:
The circulator changes the pressure proportionally to the current flow.
The pressure value can be adjusted with the + and - buttons.

Constant pressure mode:
The circulator maintains the pressure constant when the reference flow changes.
The pressure value can be adjusted with the + and - buttons.

Fixed speed mode:
The circulator works with constant curve and the curve could be changed using + e - buttons.

Coverage chart

![Coverage chart](image_url)
NCED G.F Energy saving twin circulating pumps with flanges

Characteristic curves

Curve di funzionamento riferite a singola testa
NCED G.F
Energy saving twin circulating pumps with flanges

Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Pos.</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump casing</td>
<td>1</td>
<td>Cast iron</td>
</tr>
<tr>
<td>Impeller</td>
<td>2</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Shaft</td>
<td>3</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Bearings</td>
<td>4</td>
<td>Carbon</td>
</tr>
<tr>
<td>Thrust bearing</td>
<td>5</td>
<td>Steel</td>
</tr>
<tr>
<td>Rotor</td>
<td>6</td>
<td>Stainless steel jacket</td>
</tr>
<tr>
<td>Winding</td>
<td>7</td>
<td>Copper wire</td>
</tr>
<tr>
<td>Electronic card</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Gasket</td>
<td>9</td>
<td>EPDM</td>
</tr>
</tbody>
</table>

Examples of installations

![Diagram of pump installations]

Dimensions and weights

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DN</th>
<th>H</th>
<th>Q</th>
<th>P<sub>1</sub></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W min</td>
<td>W max</td>
</tr>
<tr>
<td>NCED G 65F-180/340</td>
<td>65</td>
<td>17</td>
<td>60</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>NCED G 80F-130/360</td>
<td>80</td>
<td>13</td>
<td>78</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>NCED G 80F-180/360</td>
<td>80</td>
<td>17</td>
<td>62</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DN</th>
<th>DE</th>
<th>DK</th>
<th>DG</th>
<th>N.</th>
<th>Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>165</td>
<td>110/125</td>
<td>90</td>
<td>4</td>
<td>14/19</td>
</tr>
<tr>
<td>65</td>
<td>185</td>
<td>130/145</td>
<td>110</td>
<td>4</td>
<td>14/19</td>
</tr>
<tr>
<td>80</td>
<td>200</td>
<td>160</td>
<td>128</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>