F-MPS

LEICHT ZU INSTALLIEREN Plug and Play Lösung

ENERGIE EFFIZIENZ

Hocheffizienter Einphasenmotor 24 % Energieeinsparung im Vergleich zu einer herkömmlichen Pumpe

KOMPAKTES DESIGN

Ausgestattet mit einer programmierbaren Logik. Ermöglicht dem Produkt, dank des analogen Sensors, die Programmierung des Wiedereinschaltdrucks. Eine ideale Lösung, die die Notwendigkeit eines Ausdehnungsgefäßes reduziert oder überflüssig macht.

Mehrstufige Reinwasser-Tauchmotorpumpen mit integriertem elektronischem Drucksensor.

Ausführung

Mehrstufige Tauchmotorpumpen in Blockbauweise 5". Einfache Installation als Plug and Play Lösung, kompaktes Design, hohe Energieeffizienz. Individuelle Betriebsmodi zum automatischen Ein – und Ausschalten beim Öffnen und Schließen von Entnahmestellen. Die Pumpe ist auf der Druckseite mit einem Rückschlagventil ausgestattet.

E-MPSM mit eingebautem Kondensator, erreichbar über das Druckgehäuse. Untenliegender Hydraulikteil und obenliegender Motor, der vom geförderten Wasser gekühlt wird. Damit wird auch bei einer nur teilweise eingetauchten Pumpe ein sicherer Betrieb garantiert.

Doppelte Wellenabdichtung mit zwischenliegender Ölkammer.

Das Saugsieb verhindert das Eindringen von Festkörpern mit einer Korngröße von mehr als 2 mm.

Einsatzgebiete

Zur Wasserversorgung aus Brunnen, Tanks oder Reservoirs. Für das Haus, für Gärten und zur Bewässerung. Regenwassernutzung.

Vorteile

Hocheffizienter einphasiger Asynchronmotor:

- · Geringere Belastung des Kondensators
- · niedrigere und gleichmäßigere Motortemperatur
- Motorüberwachung
- einstellbarer Betriebs- und Einschaltdruck
- · programmierbarer Ausschaltdruck
- · geringere hydraulische Verluste
- Überwachung von Spannung und Motorstrom
- Überwachung des maximalen Anlaufstromes

Schutzfunktionen

- Trockenlaufschutz
- · Überwachung der Motorlast
- · Schutz vor Pumpenblockierung
- Stromüberwachung
- · Überwachung Netzanschluss

Einsatzbedingungen

Mediumstemperatur: von 0 °C to +35 °C.

Mindest-Innendurchmesser des Brunnens: 140 mm.

Mindest-Eintauchtiefe: 100 mm.

Maximale Eintauchtiefe: 20 m (bei entsprechender Kabellänge).

Dauerbetrieb.

Motor

2-poliger Induktionsmotor, 50 Hz (n = 2900 1/min). Einphasig (Wechselstrom) 230 V \pm 10%, mit Thermoschalter. Kondensator eingebaut

Kabel - Pumpe 07BB-F, 3G1+4x0,34 mm2, Länge 23 m.

Netzkabel H07RN8-F, 3G1,5 Länge 1,5 m

mit Stecker CEI-UNEL 47166.

Isolationsklasse F.

Schutzklasse IP X8

Trockenwicklung mit Dreifach-Imprägnierung, feuchtigkeitsbeständig. Ausführung nach Ausführung nach EN 60335-2-41 (CEI 61-69).

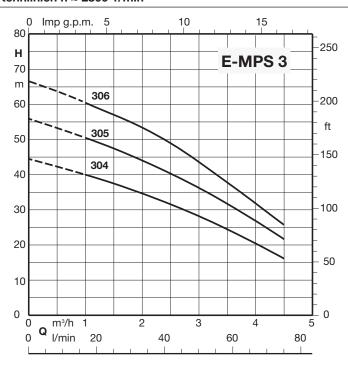
Bezeichnung

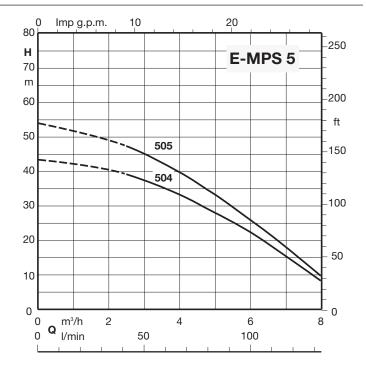
Beispiel: E-MPSM 304 E = Elektronisch MPS = Baureihe M = Einphasig

3 = Nenndurchfluss in m³/h 04 = Anzahl der Laufräder

Werkstoffe

Teile-Benennung	Werkstoffe
Druckgehäuse	Cr-Ni Stahl 1.4301 EN 10088 (AISI 304)
Pumpenmantel	Cr-Ni Stahl 1.4301 EN 10088 (AISI 304)
Saugsieb	Cr-Ni Stahl 1.4301 EN 10088 (AISI 304)
Motormantel	Cr-Ni Stahl 1.4301 EN 10088 (AISI 304)
Rückschlagventil	POM - Acetalharz
Stufengehäuse	PPO-GF20 (Noryl)
Laufrad	PPO-GF20 (Noryl)
Welle	Cr-Ni Stahl 1.4301 EN 10088 (AISI 304)
Kondenssatorabdeckung	PPS Polymer (Grivory)
Ölkammerdeckel	PPS Polymer (Grivory)
Stützring (vorgespannt)	PPS Polymer (Grivory)
Abstandshülse	PPS Polymer (Grivory)
Obere Gleitringdichtung	Keramik, Kohle, NBR
Untere Gleitringdichtung	Kohle, Siliziumkarbid, NBR
Dichtungsschmieröl	Weißöl für Lebensmittelmaschinen und Pharmazeutik

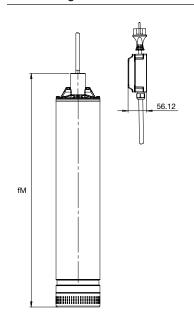

Kenndaten n ≈ 2900 1/min

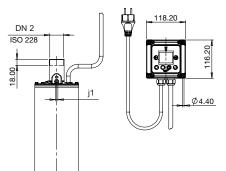

Einphasia

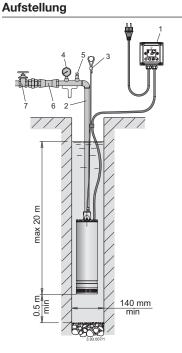
Emphasis																				
	Q = Fördermenge																			
							m³/h		1	1,5	2	2,5	3	3,5	4	4,5	5	6	7	8
Modell	230V	Konde	ensator	F	2	P1	l/min 0	16,6	25	33,3	41,6	50	58,3	66,6	75	83,3	100	117	133	
	А	V	uf	kW	HP	kW						H (m)	= Gesa	mtförde	rhöhe					
E-MPSM 304	4,1	450	25	0,55	0,75	0,8		44	40	37,5	35	31,5	28,5	24,5	21	16	-	-	-	-
E-MPSM 305	5	450	30	0,75	1	1		56	50	47	44	40	36	32	26,5	21,5	-	-	-	-
E-MPSM 306	6	450	35	0,9	1,2	1,2		66,5	60,5	57	53	48,5	43,5	38	32	26	-	-	-	-
E-MPSM 504	6	450	35	0,9	1,2	1,2		45	-	-	-	39,5	37,8	35,8	33,5	31	28	22	15,5	8
E-MPSM 505	7	450	35	1,1	1,5	1,3		53	-	-	-	47,5	45,5	43	40	37	33	26	18	10

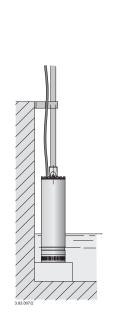
P1: Max. Leistungsaufnahme. P2: Motornennleistung. H: Gesamtförderhöhe in m **Versuchsergebnisse mit sauberem und kaltem Wasser, ohne Gasgehalt.** Toleranzen nach UNI EN ISO 9906:2012

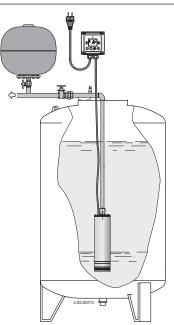
Kennlinien n ≈ 2800 1/min






Abmessung und Gewicht





TYP	ISO 228		kg		
	DN2	fM	j1	15	Gewicht
E-MPSM 304	G 1 1/4	659.2	7	133	15.5
E-MPSM 305	G 1 1/4	708.2	7	133	16.9
E-MPSM 306	G 1 1/4	732.2	7	133	17.8
E-MPSM 504	G 1 1/4	684.2	7	133	17.1
E-MPSM 505	G 1 1/4	708.2	7	133	17.4

Mit Kabellänge: 23 m

- 1. Schaltkasten 2. Druckleitung
- 3. Sicherheitsseil
- 4. Manometer
- 5. Entlüftungsventil
- 6. Schieber
- 7. Druckbehälter

Pumpe aufgehängt

Pumpe stehend

Installationsbeispiele