ACCESSORIES

ARIAMAT AUTOMATIC AIR FEEDER

ARIAMAT AR 300E AR 1000E AR 2000E Connections and 1 m polyethylene pipe

Construction

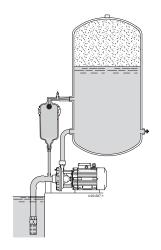
The automatic air feeder ARIAMAT controls the air cushion in the pressure vessel by replacing the air dissolved in the water at every pump start.

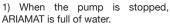
This device limits the number of pump starts and stops, allows a better use of the water reserve and improves the overall performance of the automatic pressure system.

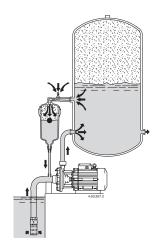
Functioning mode

ARIAMAT operation is explained in pictures 1-2-3-4.At the end of every cycle, ARIAMAT AR 300E, AR 1000E and AR 2000E let in the vessel 300, 1000 and 2000 cm3 of air respectively. If the pumps work under positive suction head and water falls to the suction inlet, there will not be enough suction pressure in the suction pipe to allow a correct operation of ARIAMAT; in this case, it is necessary to create an artificial loss in the suction pipe, by closing gradually the gate valve when the pump is running until the water level in the ARIAMAT starts dropping. When a sufficient suction pressure to grant a safe ARIAMAT operation cannot be achieved, it is recommended to feed the vessel with a compressed air system and level probes.

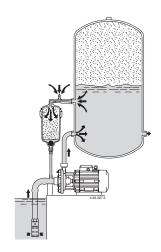
Materials

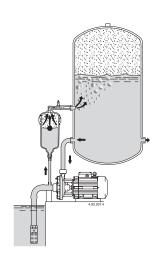

Components	Materials
upper elbow	Brass
valve	Brass
Housing	Polycarbonate
Ball valve	Rubber
Conical fittings	Brass
Pipe	polyethylene


Description of the supply


The ARIAMAT is normally fitted on our automatic water systems. The supply of ARIAMAT, as a spare part to be installed by the customer, includes: ARIAMAT assembled with upper elbow and air valve;

Polyethylene tube with ring nut and fitting for connection to the pump suction side.


Pressure		Pressure vessel capacity in litres									
in m	100	200	300	400	500	750	1000	2000	3000	4000	5000
14/28		AR 300E					AR 1000E			AR 2000E	
20/30		AR 300E				AR 1000E			AR 2000E		
30/40		AR 300E				AR 1000E AR 2			000E		
35/55		AR 300E			AR 1000E				AR 2000E		
55/70	AR	300E	AR 1000E			000E				AR 2000E	
75/95	AR 300E		AR 1000E				The use of an air compressor is recommended.				



When starting, the pumps creates a suction pressure which also takes the water from ARIAMAT, allowing some more water to come from the vessel. The water through the ARIAMAT venturi sucks air from the upper valve.

The water level in the ARIAMAT drops until the ball valve moves to the bottom of the ARIAMAT closing the hole of the pipe connected to the pump. ARIAMAT is now full of water.

When stopping, there is a back-flow of water from the vessel through the pump, to the ARIAMAT. Air is pushed inside the vessel.

ACCESSORIES

VALVES

check valve

- VNR 1
- VNR 1 1/4
- VNR 1 1/2
- · VNR 2

Foot valve: VDF 1 VDF 1 1/4 VDF 1 1/2 VDF 2

PRESSURE GAUGES

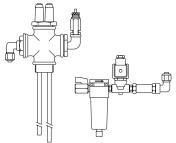
axial connection type MA 0-6 MA 0-6 ABS

radial connection type MR 0-10 MR 0-12 MR 0-16

CONNECTOR

Type: RA5 H 92 RA5 H 105 connection G 1

LEVEL PROBES


Type: SL 2 electrodes SLA Assembled level probes (cable length on request)

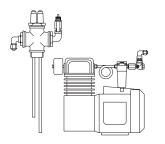
example: SLA 30 SLA Assembled level probes 30 = cable length 30 m

FLOAT SWITCH

Type: INTGALL (cable 3m, 5m, 10m)

SYSTEM FOR AIR INTAKE

Level probe assembly with solenoid valve



Type: INTGALL M (5m, 10m, 20m cable)

Type: INTGALL A (5m, 10m cable)

SYSTEM FOR AIR INTAKE

Kit of level probes with compressor

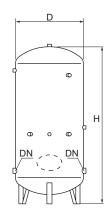
FLEXIBLE HOSE

Pump type	d x length
FP 1-630	G 1 x 630
FP 1-680	G 1 x 680

ACCESSORIES

SPHERICAL VESSEL

Type: SS 24: G1 connection, 24l capacity BUTYL rubber diaphragm.


CYLINDRICAL TANK WITH BASE AND FEET

Type: SC 20 BP: G1 connection, 20l capacity BUTYL rubber diaphragm.

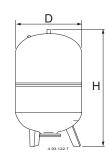
CE 97/23 PED APPROVED PRESSURE VESSELS (Air tanks)

Hot galvanized vessels

	1			
Pump type	Dimensions	DN	weigth	
	D x H mm	DIN	Kg	
100- 5	400 x 1020	G 1	32	
200- 5	450 x 1440	G 1	48	
300-8	550 x 1500	G 1 1/2	65	
500-8	650 x 1820	G 2	105	
800-8	800 x 1900	G 2	145	
1000-8	800 x 2150	G 2 1/4	160	
1000-12 (1)	800 x 2300	G 2 1/4	203	
1500-8 (1)	950 x 2500	G 2	255	
2000-8 (1)	1100 x 2570	G 2 1/4	330	
2000-12 (1)	1000 x 2780	G 2 1/4	387	
3000-8 (1)	1250 x 2930	G 3	470	
3000-12 (1)	1200 x 2930	G 3	596	
4000-8 (1)	1450 x 3090	G 3	620	
4000-12 (1)	1450 x 3090	G 3	880	
5000-8 (1)	1450 x 3590	G 4	715	
5000-12 (1)	1450 x 3590	G 4	1020	

The vessels are suitable for water up to 50 °C

The vessels are all approved at manufacturer's premises and are supplied complete with safety valve, tested pressure gauge and fittings.


(1) Tanks subject to annual inspection by authorised bodies, by the customer.(Pressure x Volume P x V > 8000; or nominal pressure >11.76 bar).

VERTICAL STAINLESS STEEL CYLINDRICAL TANK

SCX 20: G1 connection, 20l capacity
BUTYL rubber diaphragm.

CE 97/23 PED APPROVED MEMBRANE VESSELS (Membrane vessels)

Pump type	PRESSURE	SURE Dimensions DN		weigth
	bar	D x H mm	DIN	Kg
SM 60 V	10	382 x 845	G 1	-
SM 80 V	10	450 x 850	G 1	-
SM 100 V	10	450 x 950	G 1	-
SM 200 V	10	550 x 1255	G 1 1/2	-
SM 300 V	10	630 x 1405	G 1 1/2	-
SM 500 V	10	780 x 1550	G 1 1/2	-
SM 750 V	10	780 x 1940	G 1 1/2	-
SM 1000 V	10	780 x 1940	G 2	_

STAINLESS STEEL CYLINDRICAL TANK WITH BASE AND FEET

Type: SCX 20 BP: G1 connection, 20l capacity BUTYL rubber diaphragm.

EPDM diaphragm
Temperature -10 ÷ +100 °C
With safety valve and pressure gauge 0÷10 bar