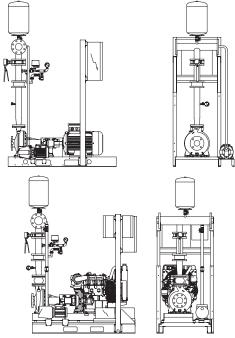
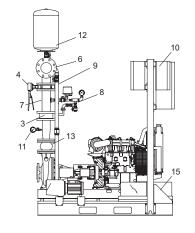

EJ, DJ



UNE-EN 12845 para alimentación de sistemas de extinción de incendios

Calpeda


EJ 10 Grupos UNI-EN 12845 con 1 bomba eléctrica de alimentación N

EJ 11 Grupos UNI-EN 12845 con 1 bomba eléctrica de alimentación N y bomba de compensación

Grupos UNI-EN 12845 con 1 bomba diésel de alimentación N y bomba de compensación

Características constructiva

- 1 Bomba de alimentación diésel
- 2 Bomba de compensación
- 3 Válvula de retención
- 4 Válvula de cierre con candado
- 5 Válvula de cierre de bola
- 6 Colector de impulsión
- 7 Preparación protección rociadores compartimento bombas
- 8 Sistema de arranque de la bomba principal compuesto por dos presostatos, manómetro de glicerina 0÷16bar, válvula de bola, circuito by-pass
- 9 Sistema de gestión de bomba piloto compuesto por un presostato y manómetro de glicerina 0÷16bar
- 10 -Cuadro eléctrico de control de la bomba (uno para cada bomba)
- 11 Presostato para la señal "bomba en movimiento", conexión de recirculación de agua con diafragma y manómetro de glicerina 0÷16bar
- 12 Depósito de membrana It.20 PN16
- 13 Junta compensadora de amortiguación de vibraciones
- 14 Depósito de gasóleo en pedestal separado (autonomía 6 horas)
- 15 Base de acero pintado

Todas las válvulas de mariposa o de bola se bloquean en posición normal mediante un candado con llave.

Las bombas con motor diésel están equipadas con juntas antivibratorias de aspiración e impulsión.

Ejecución

Grupos fabricados de acuerdo con las normas UNI-EN 12845 para la alimentación de sistemas automáticos de extinción de incendios (con rociadores) y UNI 10779 para sistemas de extinción de incendios con hidrantes.

Los grupos, según el modelo, pueden estar equipados con una bomba de compensación que permite mantener el sistema bajo presión sin la intervención de las bombas principales.

Donde se instalan dos bombas, cada una debe ser capaz de proporcionar independientemente los caudales y presiones especificados. Cuando se instalen tres bombas, cada bomba debe ser capaz de suministrar al menos el 50% del caudal requerido a la presión especificada.

Aplicaciones

Alimentación de sistemas automáticos de extinción de incendios con rociadores e hidrantes.

Modo de trabajo

Las bombas entran en funcionamiento después de una caída de presión en el sistema de extinción de incendios.

La primera en arrancar es la bomba de compensación (donde esté); si esta no consigue restablecer la presión, interviene la bomba de alimentación.

Cuando las bombas de alimentación son más de una, entran en funcionamiento "en cascada" estando los presostatos de arranque calibrados con presiones diferentes.

Los presostatos de las bombas de alimentación sirven sólo para el arranque ya que la parada debe ser manual para los grupos UNI-EN 12845, o automática con temporizador para grupos en versión UNI 10779.

El diafragma de recirculación permite el funcionamiento de las bombas de alimentación incluso con la boca de impulsión cerrada (sin ningún consumo de agua en la instalación) evitando el sobrecalentamiento del agua en el interior del cuerpo de la bomba.

Bombas

Bombas de alimentación

Las bombas centrífugas de un solo rodete de la serie N están acopladas mediante acoplamiento con espaciador, a motores eléctricos o diésel. El espaciador permite operar en la parte hidráulica de la bomba sin mover el motor.

Electrobomba de compensación

Puede ser autocebante jet, centrífuga de doble rodete.

La presión máxima desarrollada es normalmente superior a la de la bomba de alimentación.

Motores eléctricos

De inducción de 2 polos, 50 Hz, n=2900 1/min Trifásico 230/400V ± 10% hasta 3 kW 400/690V ± 10% de 4 kW y más. Aislamiento clase F. Protección IP 55 Ejecución según: IEC 60034-1.

Otras tensiones y frecuencias a petición.

Motores diésel (para bombas normalizadas de la serie N)

Son de inyección directa, con cuadro eléctrico, depósito de combustible, dos acumuladores de arranque y silenciador.

Designación

Ejemplo: EJ11 N 40-250C EJ = Serie 1 = Una bomba de alimentación

1 = Una bomba de compensación

N 40-250C = Tipo bomba de alimentación

Componentes hidráulicos

Cada bomba de alimentación está equipada con:

- Válvula de mariposa en aspiración (bajo pedido solo para aspiración bajo carga).
- · Manómetro en impulsión.
- · Diafragma de recirculación.
- Válvula antirretorno del tipo de clapeta inspeccionable u wafer de doble batiente según los modelos.
- · Válvula de mariposa en impulsión.
- · Circuito de prueba manual completo con presostatos, manómetro, válvula antirretorno, válvula de bola.

La bomba de compensación está equipada con:

- · Válvula de bola en aspiración.
- Válvula antirretorno y válvula de bola en impulsión.
- · Circuito completo con presostato, manómetro, válvula antirretorno, válvula de bola.

.

Otros componentes:

- · Colector de impulsión.
- Attacco per serbatoio di adescamento (da utilizzare solo per le
- · bombas instaladas en aspiración).
- · Depósito cilíndrico de 20 litros en el colector de impulsión.
- · Preparación acoplamiento rociadores en el compartimento de las bombas.
- · Presostato para señal de bomba en movimiento.

BAJO PETICIÓN

- · Tubería para caudalímetro.
- · Caudalímetro de lectura directa.
- · Reducciones cónicas excéntricas en aspiración.
- · Válvulas de cierre en aspiración (bajo carga hidráulica)

Cuadro eléctrico

Cuadro eléctrico bomba de alimentación (eléctrica)

Cada bomba de alimentación tiene su propio cuadro eléctrico en caja metálica con protección IP 55 que contiene el material para el funcionamiento y el control de la bomba. El arranque de los motores es directo para potencias de hasta 18,5 kW

Para motores de 22 kW y superiores el arranque es Y/ $\!\Delta$ con fusibles, contactores y temporizador.

Temporizador para parada de bombas después de 20' (UNI 10779).

La parte frontal del cuadro está equipada con:

- · Asa del seccionador de línea
- Voltímetro y amperímetro de pantalla
- Selector "Manual -O- Automático" con llave extraíble solo en posición "automático"
- Pulsadores marcha/parada
- Led de señalización: presencia de tensión, bomba en marcha, bomba parada, baja presión.

Cuadro eléctrico bomba de alimentación (diésel)

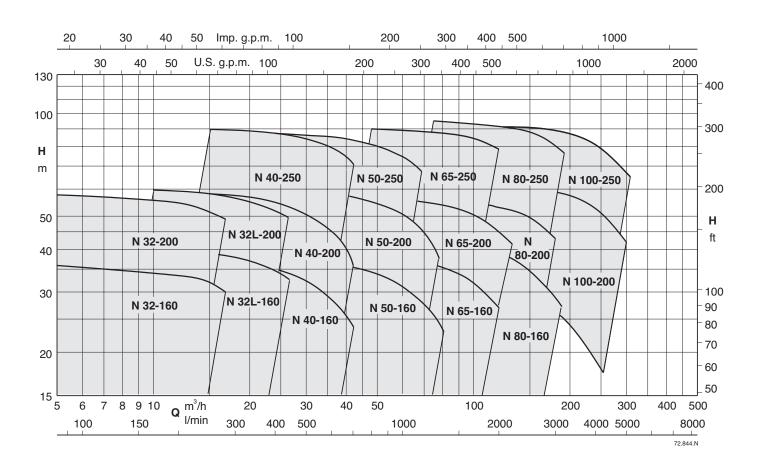
Contiene la centralita electrónica para la gestión del motor diésel y los cargadores de baterías para la alimentación de los acumuladores de arranque.

La parte frontal del cuadro está equipada con:

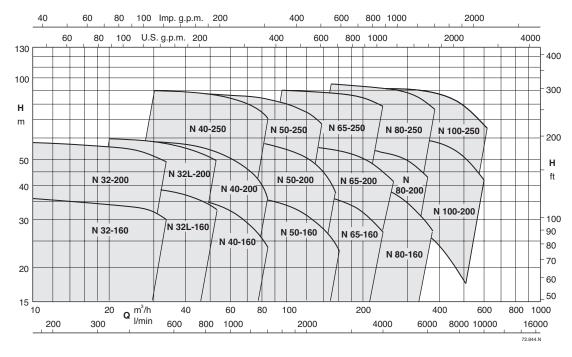
- Asa del seccionador de línea.
- Frontal centralita electrónica.
- · Selector "Manual -O- Automático" con llave extraíble sólo en posición "automático".

Cuadro eléctrico bomba de compensación

La bomba de compensación está equipada con su propio cuadro eléctrico con caja termoplástica con protección IP 55.

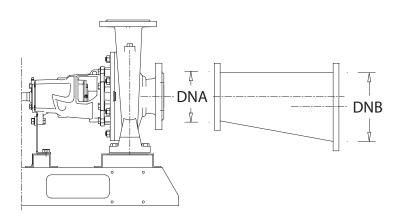

Panel de control remoto

Para ser instalado en un local vigilado, para la señalización de posibles anomalías del estado del grupo. Debe ser alimentado con 220V, produce una señal acústica - visual durante 24 horas.



Con 1 bomba de alimentación en funcionamiento

Con 2 bombas de alimentación en funcionamiento


Donde se instalan dos bombas, cada una debe ser capaz de proporcionar independientemente los caudales y presiones especificados. Cuando se instalen tres bombas, cada bomba debe ser capaz de suministrar al menos el 50% del caudal requerido a la presión especificada.

Accesorios

REDUCCIONES EXCÉNTRICAS

Reducciones excéntricas con bridas para ser instaladas en la aspiración de las bombas principales, se completan con separación de ¼" con válvula de bola de cierre y manómetro de vacío.

Para la elección, compruebe el diámetro de la boca de aspiración de las bombas principales y luego consulte las siguientes tablas para definir la ampliación del cono excéntrico (según el tipo de instalación: altura de aspiración o altura positiva).

Cabe señalar que las tablas siguientes tienen en cuenta solo las indicaciones relativas a la velocidad máxima admisible en aspiración de las bombas, tal dimensionamiento puede no ser suficiente ya que la Norma EN 12845 requiere que la tubería de aspiración, incluidas todas las válvulas y racores, debe diseñarse de manera que se garantice que el NPSH disponible (calculado a la temperatura máxima prevista del agua) en la entrada de la bomba, supere el NPSH requerido de al menos 1 m al caudal máximo de la bomba como se indica en el cuadro 14 de la Norma EN 12845.

TIPO	DNA	DNB
RE50-65	DN50	DN65
RE50-80	DN50	DN80
RE50-100	DN50	DN100
RE50-125	DN50	DN125
RE65-80	DN65	DN80
RE65-100	DN65	DN100
RE65-125	DN65	DN125
RE65-150	DN65	DN150
RE65-200	DN65	DN200
RE80-100	DN80	DN100
RE80-125	DN80	DN125
RE80-150	DN80	DN150
RE80-200	DN80	DN200
RE80-250	DN80	DN250
RE100-150	DN100	DN150
RE100-200	DN100	DN200
RE100-250	DN100	DN250
RE125-200	DN125	DN200
RE125-250	DN125	DN250
RE125-300	DN125	DN300
RE150-250	DN150	DN250
RE150-300	DN150	DN300
RE150-350	DN150	DN350
RE150-400	DN150	DN400
RE200-300	DN200	DN300
RE200-350	DN200	DN350
RE200-400	DN200	DN400
	2.1200	5.1.00

Tabla de selección rápida de reducción excéntrica

Para mantener dentro de la tubería de aspiración de la bomba principal las velocidades de flujo indicadas en la Norma EN 12845, según el caudal máximo requerido por la instalación, se debe ensanchar la boca de aspiración de la bomba principal mínima al diámetro indicado en la siguiente tabla:

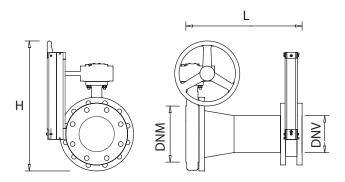
	INSTALACIÓN DEBAJO Velocidad del agua (V≤ 1,8 m/s)									
Q (l/m)	0÷358	359÷542	543÷848	849÷1324	1325÷1907	1908÷3390	3391÷5297	5298÷7626	7627÷10381	10382÷13558
Ø min	DN65	DN80	DN100	DN125	DN150	DN200	DN250	DN300	DN350	DN400
	INSTALACIÓN EN ASPIRACIÓN Velocidad del agua (V≤ 1,5 m/s)									
Q (l/m)	0÷452	453÷706	707÷1103	1104÷1589	1590÷2824	2825÷4413	4414÷6355	6356÷8650	8651÷11299	10382÷13558
Ø min	DN80	DN100	DN125	DN150	DN200	DN250	DN300	DN350	DN400	DN400

COMPENSADORES ELÁSTICOS ANTIVIBRACIONES

TIPO	DN		
CE-50	DN50 PN16		
CE-65	DN65 PN16		
CE-80	DN80 PN16		
CE-100	DN100 PN16		
CE-125	DN125 PN16		
CE-150	DN150 PN16		
CE-200	DN200 PN16		
CE-250	DN250 PN16		
CE-300	DN300 PN16		
CE-350	DN350 PN16		
CE-400	DN400 PN16		

En presencia de motobomba se aconseja instalar un compensador elástico antivibración en aspiración para amortiguar las vibraciones (en impulsión de la motobomba ya está presente). Insertando un compensador entre dos colectores de impulsión es posible conectar entre ellos dos módulos de lucha contra incendios.

Accesorios


VÁLVULAS DE CIERRE DE MARIPOSA TIPO "LUG"

TIPO	DN
LUG-50	DN50
LUG-65	DN65
LUG-80	DN80
LUG-100	DN100
LUG-125	DN125
LUG-150	DN150
LUG-200	DN200
LUG-250	DN250
LUG-300	DN300
LUG-350	DN350
LUG-400	DN400

Válvulas de cierre de mariposa tipo LUG con orejas roscadas, equipadas con palancas para maniobrar hasta DN100 y volante para diámetros superiores.

KIT CAUDALÍMETRO

TIPO	Caudalímetro	Escala completa	Cone	kiones	L	Н
		(m3/h)	DNM	DNV	(mm)	(mm)
KM-65-40	T40	55	DN65	DN40	412	452
KM-65-50	T50	90	DN65	DN50	465	452
KM-80-65	T65	140	DN80	DN65	540	460
KM-100-80	T80	200	DN100	DN80	635	470
KM-125-100	T100	280	DN125	DN100	770	485
KM-150-125	T125	480	DN150	DN125	910	550
KM-200-150	T150	600	DN200	DN150	1045	600
KM-250-200	T200	1000	DN250	DN200	1335	670
KM-300-250	T250	1600	DN300	DN250	1630	730

Kit de conexión entre el colector de impulsión del grupo de lucha contra incendios y el medidor de caudal (caudalímetro) compuesto por: válvula de cierre, manguito de unión de acero galvanizado de longitud adecuada y caudalímetro. En caso de composición con bridas, se suministra también la contrabrida a introducir aguas abajo del caudalímetro, con dos juntas de goma negra y tornillería de fijación del caudalímetro, se recuerda que aguas abajo del caudalímetro es necesaria la introducción de una válvula de corte adicional para la regulación del flujo de agua.

ALARMAS ACÚSTICO-LUMINOSAS AUTOALIMENTADAS

Estos equipos permiten el control y la señalización remota, según la norma EN12845, de las alarmas relativas al grupo de lucha contra incendios.

Tipo RA 12845 (n.º 4 entradas alarma "nivel A" y n.º 12 entradas alarma "nivel B")

- Cuadro electrónico de señalización de alarmas;
- Entrada de red 1 ~50/60Hz 230V ±10%;
- Transformador 400 V/24 V para circuitos auxiliares;
- n.º 4 Entradas en bajísima tensión de contacto limpio NC para alarma de incendio "nivel A"
- (al abrir el contacto NC se activa el intermitente rojo y el zumbador);
- n.º 12 Entradas en bajísima tensión de contacto limpio NC por alarma de avería "nivel B"
- (al abrir el contacto NC se activa el intermitente amarillo y el zumbador);
- · Indicador verde de presencia de tensión;
- · Indicador rojo de "alarma"; Indicador rojo "sirena" desactivado;
- Botón "test" para la activación momentánea de la sirena;
- Botón "Reset" para el restablecimiento manual de la condición de alarma;
- · Pulsador "activación sirena" para la activación del zumbador sonoro;
- · Botón "exclusión sirena" para desactivar el zumbador sonoro;
- Selector interno para selección del modo de restablecimiento de la alarma (automático-manual);
- Selector interno para la activación del temporizador de apagado automático de la sirena;
- Trimmer para selección de tiempo de retardo de apagado automático (de 25" a 120");
- Zumbador de alarma sonora 90dB 12Vcc;
- Batería sellada interna para autoalimentación 12VDC 1.2Ah;
- · Fusible de protección auxiliares;
- · Fusible de protección acumulador;
- Salida de alarma general con contacto de intercambio (máx. 5A 250V AC1);
- Lámpara de alarma intermitente amarilla 3W 12VDC;
- · Lámpara de alarma intermitente roja 3W 12VDC;
- · Envoltura de material termoplástico;
- · Grado de protección IP55.